239 research outputs found

    Dichloromethylation of enones by carbon nitride photocatalysis

    No full text
    Small organic radicals are ubiquitous intermediates in photocatalysis and are used in organic synthesis to install functional groups and to tune electronic properties and pharmacokinetic parameters of the final molecule. Development of new methods to generate small organic radicals with added functionality can further extend the utility of photocatalysis for synthetic needs. Herein, we present a method to generate dichloromethyl radicals from chloroform using a heterogeneous potassium poly(heptazine imide) (K-PHI) photocatalyst under visible light irradiation for C1-extension of the enone backbone. The method is applied on 15 enones, with γ,γ-dichloroketones yields of 18–89%. Due to negative zeta-potential (−40 mV) and small particle size (100 nm) K-PHI suspension is used in quasi-homogeneous flow-photoreactor increasing the productivity by 19 times compared to the batch approach. The resulting γ,γ-dichloroketones, are used as bifunctional building blocks to access value-added organic compounds such as substituted furans and pyrroles

    Emerging concepts in photocatalytic organic synthesis

    Get PDF
    Visible light photocatalysis has become a powerful tool in organic synthesis that uses photons as traceless, sustainable reagents. Most of the activities in the field focus on the development of new reactions via common photoredox cycles, but recently a number of exciting new concepts and strategies entered less charted territories. We survey approaches that enable the use of longer wavelengths and show that the wavelength and intensity of photons are import parameters that enable tuning of the reactivity of a photocatalysts to control or change the selectivity of chemical reactions. In addition, we discuss recent efforts to substitute strong reductants, such as elemental lithium and sodium, by light, and technological advances in the field

    Recyclable, bifunctional metallaphotocatalysts for C–S cross-couplings

    Get PDF
    Metallaphotocatalytic cross-couplings are typically carried out by combining homogeneous or heterogeneous photocatalysts with a soluble nickel complex. Attempts to realize recyclable catalytic systems use immobilized iridium complexes to harvest light. We present bifunctional, materials for metallaphotocatalytic C–S cross couplings that can be reused without losing their catalytic activity. Key to the success is the permanent immobilization of a nickel complex on the surface of a heterogeneous semiconductor through phosphonic acid anchors. The optimized catalyst harvests a broad range of the visible light spectrum and requires a nickel loading of only ~0.1 mol%

    Modulating the surface and photophysical properties of carbon dots to access colloidal photocatalysts for cross-couplings

    Get PDF
    Photoredox-mediated Ni-catalyzed cross-couplings are powerful transformations to form carbon–heteroatom bonds and are generally photocatalyzed by noble metal complexes. Low-cost and easy-to-prepare carbon dots (CDs) are attractive quasi-homogeneous photocatalyst alternatives, but their applicability is limited by their short photoluminescence (PL) lifetimes. By tuning the surface and PL properties of CDs, we designed colloidal CD nano-photocatalysts for a broad range of Ni-mediated cross-couplings between aryl halides and nucleophiles. In particular, a CD decorated with amino groups permitted coupling to a wide range of aryl halides and thiols under mild, base-free conditions. Mechanistic studies suggested dynamic quenching of the CD excited state by the Ni co-catalyst and identified that pyridinium iodide (pyHI), a previously used additive in metallaphotocatalyzed cross-couplings, can also act as a photocatalyst in such transformations

    Heterogeneous metallaphotoredox catalysis in a continuous-flow packed-bed reactor

    Get PDF
    Metallaphotoredox catalysis is a powerful and versatile synthetic platform that enables cross-couplings under mild conditions without the need for noble metals. Its growing adoption in drug discovery has translated into an increased interest in sustainable and scalable reaction conditions. Here, we report a continuous-flow approach to metallaphotoredox catalysis using a heterogeneous catalyst that combines the function of a photo- and a nickel catalyst in a single material. The catalyst is embedded in a packed-bed reactor to combine reaction and (catalyst) separation in one step. The use of a packed bed simplifies the translation of optimized batch reaction conditions to continuous flow, as the only components present in the reaction mixture are the substrate and a base. The metallaphotoredox cross-coupling of sulfinates with aryl halides was used as a model system. The catalyst was shown to be stable, with a very low decrease of the yield (≈1% per day) during a continuous experiment over seven days, and to be effective for C–O arylations when carboxylic acids are used as nucleophile instead of sulfinates

    Benzylic fluorination induced by a charge-transfer complex with a solvent-dependent selectivity switch

    Get PDF
    We present a divergent strategy for the fluorination of phenylacetic acid derivatives that is induced by a charge-transfer complex between Selectfluor and 4-(dimethylamino)pyridine. A comprehensive investigation of the conditions revealed a critical role of the solvent on the reaction outcome. In the presence of water, decarboxylative fluorination through a single-electron oxidation is dominant. Non-aqueous conditions result in the clean formation of α-fluoro-α-arylcarboxylic acids

    Kontinuierliche heterogene Photokatalyse in seriellen Mikro‐Batch‐Reaktoren

    Get PDF
    Abstract Solid reagents, leaching catalysts, and heterogeneous photocatalysts are commonly employed in batch processes but are ill-suited for continuous-flow chemistry. Heterogeneous catalysts for thermal reactions are typically used in packed-bed reactors, which cannot be penetrated by light and thus are not suitable for photocatalytic reactions involving solids. We demonstrate that serial micro-batch reactors (SMBRs) allow for the continuous utilization of solid materials together with liquids and gases in flow. This technology was utilized to develop selective and efficient fluorination reactions using a modified graphitic carbon nitride heterogeneous catalyst instead of costly homogeneous metal polypyridyl complexes. The merger of this inexpensive, recyclable catalyst and the SMBR approach enables sustainable and scalable photocatalysis

    Modular continuous flow device

    No full text
    The invention refers to a modular continuous flow device for automated chemical multistep synthesis under continuous flow conditions. The device comprises a plurality of different types of continuous flow modules and a valve assembly for connecting the continuous flow modules to each other in a parallel or radial manner. This arrangement allows conducting convergent chemical reaction sequences by pre-synthesizing and intermediately storing or simultaneously synthesizing at least one intermediate product which is needed in the main synthetic reaction sequence in order to obtain the final product
    • 

    corecore